A Survey of Non-radial Directional Distance Function and Global Malmquist-Luenberger Index in Assessing Carbon Emission Performance of Urban Agglomerations
DOI:
https://doi.org/10.71204/xphyk512Keywords:
Carbon Emissions, National Urban Agglomerations, Non-Radial Directional Distance Function, Gml IndexAbstract
This survey paper explores an advanced analytical framework that integrates non‑radial directional distance functions (NDDF) and the Global Malmquist‑Luenberger (GML) index to assess carbon emission performance and environmental efficiency in urban agglomerations. The study underscores the significance of evaluating carbon emissions, given the substantial contribution of urban centers to global greenhouse gas emissions. By accommodating undesirable outputs, NDDF offer a comprehensive assessment of environmental productivity—crucial for effective policy formulation in urban settings. Integration with the GML index enhances the evaluation of green total factor productivity, offering insights into the interplay between economic growth and environmental sustainability. The paper outlines the methodological framework and discusses case studies that illustrate the practical application of these tools in Chinese urban agglomerations. Challenges such as data availability, methodological limitations, and the integration of socioeconomic factors are addressed, highlighting the need for refined methodologies and policy innovations. The findings emphasize the importance of technological advancements and targeted policies in promoting sustainable urban development. By leveraging these methodologies, urban planners and policymakers can develop effective strategies to enhance environmental efficiency and support the transition towards sustainable urban futures.
References
Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183-212.
Cai, B., Liang, S., Zhou, J., et al. (2018). China highresolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resources, Conservation and Recycling, 129, 232-239.
Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70(2), 407-419.
Chen, J., Gao, M., Cheng, S., et al. (2021). China’s citylevel carbon emissions during 1992–2017 based on the intercalibration of nighttime light data. Scientific Reports, 11(1), 33
Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51(3), 229-240.
Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2023). The AI gambit: Leveraging artificial intelligence to combat climate change—Opportunities, challenges, and recommendations. AI & Society, 38(1), 283-307.
Elmqvist, T., Andersson, E., Frantzeskaki, N., McPhearson, T., Olsson, P., Gaffney, O., Takeuchi, K., & Folke, C. (2019). Sustainability and resilience for transformation in the urban century. Nature Sustainability, 2(4), 267-273.
Färe, R., & Grosskopf, S. (2010). Directional distance functions and slacksbased measures of efficiency. European Journal of Operational Research, 200(1), 320-322.
Färe, R., Grosskopf, S., & Norris, M. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84(1), 66–83.
Färe, R., Grosskopf, S., & Pasurka, C. A. (2007). Environmental production functions and environmental directional distance functions. Energy, 32(7), 1055-1066.
Färe, R., Grosskopf, S., & Tyteca, D. (1996). An activity analysis model of the environmental performance of firms—Application to fossilfuelfired electric utilities. Ecological Economics, 18(2), 161-175.
Färe, R., Grosskopf, S., Lovell, C. A. K., et al. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Review of Economics and Statistics, 71(1), 90-98.
Han, Z.-L., Xia, K., Guo, J.-K., Sun, C.-Z., & Deng, Z. (2017). Research of the level and spatial differences of landsea coordinate development in coastal areas based on the GlobalMalmquistLuenberger index. Journal of Natural Resources, 32(8), 1271-1285.
Huang, G., & Jiang, Y. (2017). Urbanization and socioeconomic development in Inner Mongolia in 2000 and 2010: A GIS analysis. Sustainability, 9, 1-11.
Jedwab, R., & Völker, D. (2015). Urbanization without growth in historical perspective. Explorations in Economic History, 58, 1-21.
Kennedy, C., Steinberger, J., Gasson, B., et al. (2010). Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy, 38(9), 4828-4837.
Kii, M. (2021). Projecting future populations of urban agglomerations around the world and through the 21st century. npj Urban Sustainability, 1(1), 10.
Klopp, J. M., & Petretta, D. L. (2017). The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities, 63, 92-97.
Li, Y., Li, J., Gong, Y., Wei, F., & Huang, Q. (2020). CO₂ emission performance evaluation of Chinese port enterprises: A modified metafrontier nonradial directional distance function approach. Transportation Research Part D: Transport and Environment, 89, 102605.
Liora, N., Poupkou, A., Papadogiannaki, S., Parliari, D., Giama, E., Pieretti, G. A., Da Rugna, L. C., Susanetti, L., Bressan, M., Becerra Villanueva, J. A., et al. (2022). A methodology for carbon footprint estimations of research project activities—A scenarios analysis for reducing carbon footprint. Atmosphere, 14(1), 6.
Liu, Z., Han, L., & Liu, M. (2024). Highresolution carbon emission mapping and spatialtemporal analysis based on multisource geographic data: A case study in Xi'an City, China. Environmental Pollution, 361, 124879.
Lozano, S., & Soltani, N. (2018). DEA target setting using lexicographic and endogenous directional distance function approaches. Journal of Productivity Analysis, 50, 55-70.
Meng, F. (2019). Carbon emissions efficiency and abatement cost under interregion differentiated mitigation strategies: A modified DDF model. Physica A: Statistical Mechanics and its Applications, 532, 121888.
Meng, L., Graus, W., Worrell, E., et al. (2014). Estimating CO₂ emissions at urban scales by DMSP/OLS nighttime light imagery: Methodological challenges and a case study for China. Energy, 71, 468-478.
Oh, D. H. (2010). A global MalmquistLuenberger productivity index. Journal of Productivity Analysis, 34(3), 183-197.
Olawumi, T. O., & Chan, D. W. M. (2018). A scientometric review of global research on sustainability and sustainable development. Journal of Cleaner Production, 183, 231-250.
Oliveira, E. A., Andrade Jr., J. S., & Makse, H. A. (2014). Large cities are less green. Scientific Reports, 4, 4235.
Qu, Y., Xie, H., & Liu, X. (2022). Measurement of environmental sustainability in China: Based on Global Malmquist-Luenberger model. In 2022 3rd International Conference on Big Data and Social Sciences (ICBDSS 2022) . Atlantis Press, 1022-1029.
Shakhbulatov, D., Arora, A., Dong, Z., & RojasCessa, R. (2019). Blockchain implementation for analysis of carbon footprint across food supply chain. In 2019 IEEE International Conference on Blockchain (Blockchain). IEEE, 546551.
Shan, Y., Guan, Y., Hang, Y., et al. (2022). Citylevel emission peak and drivers in China. Science Bulletin, 67(18), 1910–1920.
Shi, J., Dai, X. Y., & Chen, G. J. (2024). Spatiotemporal analysis of carbon emissions based on nighttime light data in western provinces of China. Light Engineering, 32(2), 152.
Tao, F., Zhang, H., Hu, J., & Xia, X. H. (2017). Dynamics of green productivity growth for major Chinese urban agglomerations. Applied Energy, 196, 170-179.
Wang, K., Xian, Y., Lee, C.Y., Wei, Y.M., & Huang, Z. (2019). On selecting directions for directional distance functions in a nonparametric framework: A review. Annals of Operations Research, 278, 43-76.
Wang, Y., Wang, J., Liu, Y., et al. (2022). Calibrations of urbanization level in China. China CDC Weekly, 4(6), 111-115.
Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C., et al. (2022). Sustainable AI: Environmental implications, challenges and opportunities. Proceedings of Machine Learning and Systems, 4, 795-813.
Wu, F., Zhou, P., & Zhou, D. Q. (2020). Modeling carbon emission performance under a new joint production technology with energy input. Energy Economics, 92, 104963.
Yang, J., Tang, L., Mi, Z., Liu, S., Li, L., & Zheng, J. (2019). Carbon emissions performance in logistics at the city level. Journal of Cleaner Production, 231, 1258-1266.
Yao, Y., Pan, H., Cui, X., & Wang, Z. (2022). Do compact cities have higher efficiencies of agglomeration economies? A dynamic panel model with compactness indicators. Land Use Policy, 115, 106005.
Yu, T., Shu, T., & Xu, J. (2024). Spatial pattern and evolution of China’s urban agglomerations. Frontiers of Urban and Rural Planning, 2(1), 7.
Zhang, N., & Choi, Y. (2013). Totalfactor carbon emission performance of fossil fuel power plants in China: A metafrontier nonradial Malmquist index analysis. Energy Economics, 40, 549-559.
Zhang, N., Kong, F., Choi, Y., et al. (2014). The effect of sizecontrol policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy, 70, 193-200.
Zhang, N., Zhou, P., & Choi, Y. (2013). Energy efficiency, CO₂ emission performance and technology gaps in fossil fuel electricity generation in Korea: A metafrontier nonradial directional distance function analysis. Energy Policy, 56, 653-662.
Zhong, C., Yu, M., Zhang, Z., & Lu, M. (2024). Green innovation efficiency measurement of manufacturing industry in the Beijing-Tianjin-Hebei region of China based on superEBM model and MalmquistLuenberger index. Frontiers in Energy Research, 12, 1337188.
Zhou, P., Ang, B. W., & Wang, H. (2012). Energy and CO₂ emission performance in electricity generation: A nonradial directional distance function approach. European Journal of Operational Research, 221(3), 625-635.
Zhou, P., Delmas, M. A., & Kohli, A. (2017). Constructing meaningful environmental indices: A nonparametric frontier approach. Journal of Environmental Economics and Management, 85, 21-34.
Zhu, J., Zhou, D., Pu, Z., & Sun, H. (2019). A study of regional power generation efficiency in China: Based on a nonradial directional distance function model. Sustainability, 11(3), 659.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Innovation Management Practices

This work is licensed under a Creative Commons Attribution 4.0 International License.