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Abstract

This survey paper explores an advanced analytical framework that integrates non ‑ radial
directional distance functions (NDDF) and the Global Malmquist‑ Luenberger (GML) index to
assess carbon emission performance and environmental efficiency in urban agglomerations. The
study underscores the significance of evaluating carbon emissions, given the substantial
contribution of urban centers to global greenhouse gas emissions. By accommodating undesirable
outputs, NDDF offer a comprehensive assessment of environmental productivity— crucial for
effective policy formulation in urban settings. Integration with the GML index enhances the
evaluation of green total factor productivity, offering insights into the interplay between economic
growth and environmental sustainability. The paper outlines the methodological framework and
discusses case studies that illustrate the practical application of these tools in Chinese urban
agglomerations. Challenges such as data availability, methodological limitations, and the
integration of socioeconomic factors are addressed, highlighting the need for refined
methodologies and policy innovations. The findings emphasize the importance of technological
advancements and targeted policies in promoting sustainable urban development. By leveraging
these methodologies, urban planners and policymakers can develop effective strategies to enhance
environmental efficiency and support the transition towards sustainable urban futures.

Keywords: Carbon Emissions; National Urban Agglomerations; Non-Radial Directional Distance
Function; Gml Index

1. Introduction

Urban agglomerations are major sources of greenhouse gas emissions, contributing roughly
70% of global emissions. Assessing carbon emission performance in these areas is important for
sustainable development. The rapid growth of urban populations and infrastructures has increased
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the need for improved methods to monitor productivity changes and evaluate the environmental
impacts of urban growth (Wang et al., 2019; Olawumi and Chan, 2018; Liora et al., 2022). In
response to these challenges, this study applies non‑radial directional distance functions (NDDF)
and the Global Malmquist‑Luenberger (GML) index to provide a more detailed evaluation of
carbon emissions and environmental efficiency in urban settings. Prior research has shown that
traditional models do not fully capture the complexity of urban dynamics, particularly when both
desirable outputs (such as economic growth) and undesirable outputs (such as carbon emissions)
are considered.

This work makes a clear theoretical contribution by integrating NDDF with the GML index,
thereby building on and refining existing productivity frameworks. The combined approach offers
a fresh perspective on how economic activities and environmental factors interact in urban
agglomerations, providing a more accurate analysis of performance than earlier methods. On the
practical side, the findings of this study offer actionable insights for urban planners and
policymakers. By identifying key drivers of carbon emissions and environmental inefficiencies,
the research supports the design of strategies to reduce emissions, improve resource use, and
guide sustainable urban development. These results are especially useful for cities facing rapid
growth and environmental challenges, as they can inform policy measures aimed at achieving
carbon neutrality and better managing urban expansion.

2. Background and Core Concepts

2.1. Global Malmquist-Luenberger Index

The Global Malmquist‑Luenberger (GML) index uniquely incorporates both desirable and
undesirable outputs (e.g., carbon emissions) into productivity analyses, offering a nuanced
evaluation of efficiency and productivity changes over time (Li et al., 2020; Han et al., 2017).
Originally defined by Oh (2010) and building on earlier Malmquist indices (Färe et al., 1994), the
GML index provides a comprehensive understanding of environmental productivity and reflects
the economic and environmental dynamics inherent in urban settings. By assessing green total
factor productivity (GTFP), the GML index integrates energy inputs and environmental pollution,
thereby establishing a robust framework for evaluating urban environmental efficiency.

2.2. Interrelationship and Significance in Urban Agglomerations

Urban agglomerations in China, characterized by dense populations and concentrated economic
activities, present unique challenges and opportunities for sustainable development. By
incorporating undesirable outputs such as carbon emissions, the GML index serves as a
comprehensive tool for assessing environmental efficiency and identifying inefficiencies in total
factor productivity growth (Li et al., 2020). Direct applications of NDDF in urban energy contexts
have been demonstrated by Zhang et al. (2013) and Zhou et al. (2012). Modifications to the basic
approach have been proposed by Meng (2019) and Wu et al. (2020), while theoretical
advancements linking NDDF with slacks‑based measures are provided by Färe and Grosskopf
(2010), Färe et al. (2007), and Zhang et al. (2014).
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3. Methodological Framework

The methodological framework is crucial to understanding the complexities of Chinese urban
agglomerations. Table 1 outlines how NDDF and the GML index are integrated to assess
environmental efficiency. Additionally, a comparative overview (as Table 2) highlights the
systematic data utilization and holistic methods inherent in these approaches.

Table 1. A synergistic framework for evaluating carbon emission performance and environmental
efficiency in urban agglomerations, integrating NDDF and the GML index

Category Feature Method

Synergistic Framework for Urban
Agglomerations

Environmental
Evaluation

NDDF, GML

Table 2. Key benchmarks used in evaluating environmental efficiency and productivity across Chinese
urban agglomerations

Benchmark Size Domain Task Format Metric

GML 561
Environmental
Economics

Productivity Measurement
Green Productivity
Growth

NDDF 30 Power Generation Efficiency Evaluation
CO₂ Emissions, Resource
Use

MF-NDDF 17 Port Enterprises Performance Assessment
Carbon Emission
Performance

3.1. Integration of Non-Radial Directional Distance Functions

Integrating NDDF involves a systematic process that begins by identifying decision-making
units (DMUs) such as cities or provinces and collecting relevant input–output data (Wang et al.,
2019). NDDF effectively incorporate both desirable and undesirable outputs, offering a
comprehensive assessment of environmental efficiency. They enable analysis of complex
relationships between economic activities and environmental impacts by projecting DMUs onto
an efficient frontier using exogenous and endogenous directional vectors. Foundational
contributions by Chambers et al. (1996), Färe et al. (1989), and Färe et al. (1996), along with
Chung et al. (1997), underpin the approach. Extensions linking NDDF with slacks‑based
measures are provided by Färe and Grosskopf (2010), while further modifications are proposed
by Meng (2019), Wu et al. (2020), Färe et al. (2007), and Zhang et al. (2014). Lozano and Soltani
(2018) further illustrate a lexicographic approach within the NDDF framework.

3.2. Synergistic Framework for Urban Agglomerations

Combining NDDF with the GML index offers a comprehensive method for evaluating carbon
emission performance and environmental efficiency in Chinese urban agglomerations. By
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integrating NDDF—which account for multiple outputs, including undesirable ones—with the
GML index—which measures green productivity growth—the framework captures the complex
interplay between economic activities and environmental impacts (Li et al., 2020; Han et al.,
2017). This synergistic approach enables policymakers to identify inefficiencies and design
targeted strategies to enhance urban sustainability.

4. Carbon Emission Performance in Urban Agglomerations

4.1. Current State of Carbon Emissions

Carbon emission profiles in urban agglomerations exhibit significant heterogeneity due to
interactions among technological, economic, and infrastructural factors. Li et al. (2020) identified
sectoral variations in productivity changes—especially in carbon-intensive industries—while Tao
et al. (2017) demonstrated that technological innovation is a primary driver of performance.
Green innovation efficiency further influences emission performance (Zhong et al., 2024).

4.2. Factors Influencing Carbon Emissions

Urban carbon emissions are influenced by economic, technological, and infrastructural factors.
Urban sprawl increases emissions by promoting inefficient land use and higher energy demands
(Zhou et al., 2012). In contrast, compact urban forms reduce emissions by lowering travel
distances and enhancing public transit efficiency. Technological advancements, including cleaner
production processes and renewable energy adoption, are crucial for reducing emissions
(Shakhbulatov et al., 2019). Additionally, socioeconomic factors—such as higher income levels
that lead to increased consumption—contribute to larger carbon footprints (Liora et al., 2022).

4.3. Role of Urban Agglomerations in National Carbon Footprint

Chinese urban agglomerations are central to the national carbon landscape due to their
concentrated industrial production, transportation, and energy consumption (Li et al., 2020).
Oliveira et al. (2014) identified a super linear scaling relationship between urban population size
and carbon emissions. Advances in high-resolution mapping (Liu et al., 2024) and spatiotemporal
analysis (Shi et al., 2024) provide further insights into emission patterns. Spatial pattern studies
(Yu et al., 2024) and methodologies for inventorying emissions (Kennedy et al., 2010; Meng et al.,
2014) enhance our understanding of urban contributions to national emissions.

4.4. Evaluating Carbon Emission Performance Using NDDF and GML

The integration of NDDF and the GML index offers a robust framework for evaluating carbon
emission performance. NDDF capture both desirable economic outputs and undesirable
environmental outputs, while the GML index (Oh, 2010) tracks dynamic changes in green
productivity. Applications by Han et al. (2017) and Tao et al. (2017) have validated these
methods. Moreover, decomposition analyses (Li et al., 2020; Qu et al., 2022) reveal key drivers of
performance, supporting targeted policy interventions.
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5. Environmental Efficiency and Sustainable Urban Development

5.1. Conceptualizing Environmental Efficiency

Environmental efficiency reflects an urban system’s ability to optimize resource utilization
while minimizing environmental impacts, particularly carbon emissions. It is closely linked to
green total factor productivity (GTFP), which integrates static and dynamic performance while
accounting for undesirable outputs (Chen et al., 2021). Accurate urban boundary definitions
(Oliveira et al., 2014) and compact urban forms (Yao et al., 2022) are essential, as they help
reduce biases in emissions data and promote lower energy consumption. The integration of
NDDF with the GML index has advanced these assessments, providing insights into how
economic activities and environmental sustainability interact (Han et al., 2017).

5.2. Factors Influencing Environmental Efficiency

Energy-efficient technologies in industries, buildings, and transportation systems significantly
reduce urban carbon footprints (Wu et al., 2022). Regional differences in green innovation
efficiency, as highlighted by Zhong et al. (2024), underscore the need for local innovation
strategies. Digital technologies, such as blockchain, further enhance resource management and
environmental data tracking (Shakhbulatov et al., 2019). Urban areas with service-oriented
economies often demonstrate superior environmental efficiency compared to those reliant on
heavy, resource-intensive industries (Li et al., 2020). While agglomeration economies can
improve resource utilization, larger cities may also generate disproportionately higher emissions
(Oliveira et al., 2014). Transitioning to less resource-intensive sectors is therefore key to
improving overall efficiency (Tao et al., 2017). Compact urban forms reduce travel distances and
support efficient public transit, leading to lower energy consumption and emissions (Yao et al.,
2022). Well-developed transportation infrastructure further minimizes reliance on private vehicles,
as shown by studies on urban logistics (Qu et al., 2022). Effective policies, including strict
emission standards, energy regulations, and carbon pricing, drive improvements in urban
environmental performance (Li et al., 2020). Financial incentives and integrated urban planning
that coordinate land use, transportation, and economic strategies yield significant benefits (Tao et
al., 2017; Yao et al., 2022).

5.3. Environmental Performance Measurement in Urban Agglomerations

Advanced methodologies that integrate NDDF with the GML index enable comprehensive
evaluations of environmental efficiency in Chinese urban agglomerations. These methods reveal
regional variations influenced by industrial structure, technological capacity, and policy
frameworks. Studies have found that eastern coastal agglomerations tend to outperform central
and western regions, with temporal trends showing steady improvements driven by innovation
(Zhong et al., 2024; Tao et al., 2017; Oliveira et al., 2014).

5.4. Challenges and Opportunities in Environmental Efficiency Improvement

Despite significant methodological advances, challenges remain regarding data availability,
inconsistent emissions inventories, and urban boundary definitions (Olawumi and Chan, 2018).
Heterogeneity in economic structures and technological capacities requires tailored, region-
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specific approaches (Elmqvist et al., 2019). Technological innovations and comprehensive policy
frameworks, combined with climate resilience strategies, offer promising avenues for future
improvement.

6. Case Studies and Applications

This section reviews empirical applications of NDDF and the GML index within Chinese urban
agglomerations to assess environmental efficiency and carbon emission performance.

6.1. Case Studies and Benchmarking

NDDF and the GML index have been applied to evaluate environmental efficiency and
productivity across Chinese urban agglomerations. For example, Wang et al. (2019) demonstrated
dynamic efficiency analyses, while Tao et al. (2017) assessed green total factor productivity in
rapidly industrializing regions. Benchmark studies by Yang et al. (2019) and Li et al. (2020)
illustrate these approaches.

6.2. Logistics Performance and Carbon Emissions in Yunnan Province

Yang et al. (2019) documented rising logistics-related carbon emissions in Yunnan Province,
highlighting the challenge of traditional transport modes that elevate emissions. NDDF and the
GML index have been used to assess logistics eco-efficiency, incorporating carbon emissions into
performance evaluations. Strategies focus on optimizing logistics networks, adopting cleaner
transportation technologies, and promoting intermodal solutions to align with low-carbon
development goals. Zhu et al. (2019) underscore that enhancing rail and waterway infrastructure,
coupled with smart logistics systems, can significantly reduce emissions.

6.3. Urban Agglomerations in China: A Decadal Analysis

A decade-long analysis of Chinese urban agglomerations reveals that clusters with high
industrial activity tend to exhibit higher emissions, whereas service-oriented economies perform
better environmentally (Li et al., 2020). Tao et al. (2017) identify technological innovation as a
key driver of efficiency improvements, with eastern coastal agglomerations generally
outperforming central and western regions. Cleaner production technologies and energy-efficient
practices have contributed to notable emission reductions, supporting national decarbonization
goals (Zhong et al., 2024). Policy interventions promoting compact urban forms and smart city
initiatives further enhance environmental efficiency.

6.4. Benchmarking Environmental Efficiency in the Beijing-Tianjin-Hebei Region

Zhong et al. (2024) applied NDDF and the GML index to assess environmental efficiency in
the Beijing-Tianjin-Hebei (BTH) region. Findings reveal that Beijing’s service-oriented economy
yields superior efficiency compared to Tianjin and Hebei. Urban form and robust public transit
are critical determinants; compact development and efficient transit systems in Beijing contribute
significantly to its environmental performance. These insights support the design of targeted
policies to mitigate industrial emissions and promote sustainable urban growth.
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7. Challenges and Future Directions

Exploring the challenges and future directions in assessing environmental efficiency and
carbon emission performance reveals a multifaceted landscape. As Chinese urban agglomerations
expand, understanding these intricacies is vital for effective policy formulation and
implementation. The following subsections address specific challenges and limitations in this
field, emphasizing methodological hurdles and data-related issues for researchers and
policymakers. Addressing these challenges is essential for establishing robust frameworks and
innovative solutions to enhance urban sustainability.

7.1. Challenges and Limitations

Assessing environmental efficiency and carbon emission performance poses challenges due to
the reliance on extensive data and significant computational resources required by methods like
the GML index (Lozano and Soltani, 2018). Data availability and accuracy for undesirable
outputs remain problematic (Han et al., 2017). Furthermore, disparities between core and
peripheral cities and variations in regional infrastructure and economic conditions limit the
generalizability of findings. Subjective semantic labels influenced by cultural variances also
weaken reliability (Shakhbulatov et al., 2019). Moreover, focusing solely on CO₂ emissions,
while neglecting other greenhouse gases, restricts the comprehensiveness of evaluations (Zhong
et al., 2024).

7.2. Challenges in Measuring Carbon Emission Performance

Measuring carbon emission performance is complicated by the diversity of industrial processes
and infrastructural differences across regions such as Yunnan Province (Liora et al., 2022;
Oliveira et al., 2014; Qu et al., 2022). Limited and incomplete emissions data—especially in
logistics sectors—further impede accurate assessments. Advanced spatial and remote sensing
methodologies (Kennedy et al., 2010; Meng et al., 2014; Shan et al., 2022) and high-resolution
emission databases (Cai et al., 2018; Chen et al., 2021) offer promising solutions for improving
measurement precision.

7.3. Implications for Policy and Practice

Findings on carbon emission performance have significant policy implications. Integrating
NDDF and the GML index provides a solid basis for evaluating environmental performance and
informing targeted policies (Li et al., 2020; Han et al., 2017). These results underscore the need to
promote technological innovation and cleaner production processes. Investments in renewable
energy and energy-saving practices are crucial to reduce emissions and improve environmental
efficiency. Urban planning that prioritizes compact development and efficient public transit can
further reduce energy consumption. Additionally, addressing socioeconomic disparities through
sustainable consumption policies is vital for equitable carbon reduction.

7.4. Future Directions and Policy Implications

Future research should focus on refining methodologies to overcome existing limitations and
enhance sustainability outcomes. Leveraging cutting-edge technologies and expanding data
collection are essential steps (Olawumi and Chan, 2018). Further improvements in the GML
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index and the incorporation of additional environmental factors will enrich model
comprehensiveness and inform policy decisions (Färe et al., 1994). The integration of ICT in
urban planning and the development of AI frameworks for carbon monitoring represent promising
avenues. Expanding studies to include other pollutants and human capital factors, and refining
index systems for green growth in resource-dependent cities, are important future directions. A
holistic approach is critical, given that Chinese cities contribute significantly to national emissions
and face mounting climate challenges (Kii, 2021; Elmqvist et al., 2019).

7.5. Data Availability and Quality

Reliable data are critical for evaluating environmental efficiency and carbon emissions.
Limited access to precise statistics and inconsistent regional classifications complicate analyses
(Olawumi and Chan, 2018; Klopp and Petretta, 2017; Lozano and Soltani, 2018). Obtaining
accurate data on undesirable outputs is particularly challenging in areas with underdeveloped
monitoring systems, potentially skewing assessments (Elmqvist et al., 2019; Tao et al., 2017; Cai
et al., 2018; Qu et al., 2022). Enhanced monitoring systems and standardized reporting protocols
are essential to improve data quality and support reliable evaluations.

7.6. Methodological Limitations

Although the combined NDDF and GML approaches are robust, they require extensive datasets
and significant computational resources (Lozano and Soltani, 2018). Infeasibility issues with
cross-period directional distance functions and the exclusion of critical productivity variables
reduce measurement completeness, particularly in regions with limited energy statistics (Liora et
al., 2022). Additionally, cultural variations in semantic labels and limitations in data granularity
hinder consistency. These drawbacks underscore the need for continuous refinement of
sustainability methods to address the challenges posed by rapid urbanization, climate risks, and
socioeconomic inequalities (Bibri and Krogstie, 2017; Klopp and Petretta, 2017; Kii, 2021;
Elmqvist et al., 2019; Huang and Jiang, 2017).

7.7. Integration of Socioeconomic and Lifestyle Factors

Integrating socioeconomic and lifestyle factors is essential for a comprehensive understanding
of urban sustainability. Variables such as income, education, and employment significantly
influence energy consumption and carbon footprints (Li et al., 2020). Higher income levels are
often associated with increased consumption of energy-intensive goods, leading to larger carbon
footprints. Understanding these relationships is vital for designing targeted, equitable
interventions that promote sustainable behaviors (Han et al., 2017).

7.8. Urban Agglomeration Dynamics

Urban agglomerations evolve through complex interactions among economic activities,
population trends, infrastructure development, and environmental impacts (Li et al., 2020). While
dense urban areas benefit from shared resources, they also face greater environmental pressures.
Compact urban forms and efficient public transit can mitigate these impacts (Yao et al., 2022).
Moreover, technological innovations and effective governance are critical for driving low-carbon
development, and socioeconomic disparities influence overall resource utilization.



Innovation Management Practices, 2025, 1(1), 0000093
https://doi.org/10.71204/xphyk512

9

7.9. Technological and Policy Innovations

Technological and policy innovations are central to enhancing urban environmental efficiency.
The adoption of smart city technologies—such as digital platforms, ICT-based tools, and
blockchain systems—improves urban services and resource management (Shakhbulatov et al.,
2019). Transitioning to renewable energy sources significantly reduces fossil fuel reliance and
carbon emissions (Han et al., 2017). Policy innovations, including strict emission standards,
financial incentives, and integrated urban planning, are essential for sustainable development (Li
et al., 2020; Yao et al., 2022).

8. Conclusion

The exploration of non‑radial directional distance functions together with the Global
Malmquist‑Luenberger index underscores their pivotal role in assessing carbon emission
performance and environmental efficiency within Chinese urban agglomerations. These
methodologies provide a robust framework by incorporating both desirable and undesirable
outputs, thereby offering a comprehensive understanding of urban environmental dynamics and
productivity evolution. The research emphasizes the critical need for improved production
efficiency to enhance the impact of environmental policies and advance sustainable urban
development.

The study highlights the importance of implementing targeted interventions and policy reforms
to address high‑carbon lifestyles, as many consumer groups already exceed carbon footprint
benchmarks for 2030 and 2050. Recognizing the potential of alternative data sources is crucial for
deepening our understanding of urban dynamics and supporting sustainable development.
Moreover, the successful implementation of the Urban Sustainable Development Goal framework
relies on local institutional involvement and the adaptation of indicators to meet specific urban
needs.

Finally, integrating technological advancements with innovative policy measures is vital for
enhancing urban environmental efficiency—especially given the increasing trend of urban
concentration and its implications for infrastructure and sustainability strategies. The findings
advocate for policies that support green agricultural practices and comprehensive strategies that
harmonize economic growth with environmental sustainability.
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